

SATSDIFACTION

Earth observation and GIS: adaptation tools for urban environments under heat stress

Yasmina Loozen

ISSEP y.loozen@issep.be

Mapping heat health risk in Wallonia

- Heatwaves negatively impact citizens' health
- Worsen chronic conditions: cardiovascular, respiratory and cerebrovascular diseases
- Increase in mortality
 - 2022 heatwave : up to 70.000 premature deaths in Europe
- 75% of Europe's population live in cities

Mapping heat health risk in Wallonia

- Average surface temperature during a heatwave (2018 – 2023)
- Thermal satellite
- MODIS LST nighttime
- 1 km
- Freely available
- Daily data

Mapping heat health risk in Wallonia

- Downscaling MODIS LST image using land cover and Landsat
- 1km => 30m

MODIS LST 1km

Mapping heat health risk in Wallonia

- Comparison with in-situ temperature data
- Development of low-cost meteorological stations
- Citizen science

Climate risks in Wallonia

- Multi-disciplinary project to assess climate risks and develop practical tools to support climate adaptation
 - Heat hazard and Urban Heat Island
 - Social vulnerability
 - Tree species list

Climate risks in Wallonia - Heat hazard mapping

Local Climate Zones map

Climate model prediction (UrbClim)

Climate risks in Wallonia - Heat hazard mapping

Climate risks in Wallonia - Heat hazard mapping

Heat hazard

Very low Low Moderate High Very high

Climate risks in Wallonia – Social vulnerability

- Who is most at risk from climate change impacts?
- Help to prioritize solutions for adaptation
- Vulnerability depends on multiple factors:
 - o Age
 - Chronic disease
 - Social isolation
 - o Income & employment
 - Access to healthcare services
 - Access to green-space

Climate risks in Wallonia – Heat risk

Heat hazard

Population density

Social vulnerability

Risk

- Major citizen survey => citizen support for urban greening
- Urban greening for climate change adaptation
- Fight Urban Heat Island and increase urban resilience
- Ecosystems services

- First step: mapping the canopy cover. Where are the existing trees?
 - o Aerial photographs (25 cm) and geospatial data

- Mapping of the available planting sites:
 - O grass
 - artificial surfaces
 - linear road sections

Urban greening by planting trees

Beaumont, B. et al. (2022). https://doi.org/10.5194/isprs-annals-V-4-2022-243-2022

- More than 6000 trees have been planted
- 25% of the goal is achieved

Time for questions

SATSDIFACTION

From global insights to local actions: Energy transition, change detection and urban greening

François Collette

Geospatial Data Analyst - GIM francois.collette@gim.be

Who we are?

Geo solutions for governments, utilities and private companies

Belgium

Geodata Engineering

80 geo-experts

Geospatial AI

750 customers

Geo-ICT

Evaluate the solar energy production of your home

Simulate cost & return on investment

Input

- LiDAR point cloud (6,8 pt/m²)
- 2D building footprints

Method

- 3D Reconstruction (Computer Vision)
- Roof orientation
- Mobile web app (UI)

Output

- Quick computation via 3 simple questions
- Fully customized computation on demand
- Cost estimation & payback period
- Certified local installers

Change and object detection

Keeping data up-to-date

IA processing of images

Input

- Orthophoto (4 bands, 25cm GSD, 8-bit)
 - Previous year and current year
- Previous year : Construction inventory

Method

Deep Learning: Trained on past, executed on current year imagery

Output

- New / removed buildings
- Swimming pools
- Solar panels
- Roof windows

Heat stress mapping to guide urban greening solutions

Context

Smartly green the City to...

- Reduce heat islands
- Lower CO₂ emissions
- Promote biodiversity
- Combat pollution
- Enhance quality of life in urban spaces

Objective

• Reach 30% canopy index by 2050

Heat stress mapping to guide urban greening solutions

STEP 1 – Current vegetation

Input

- Orthophoto (4 bands 25cm GSD 8-bit)
- LiDAR point cloud (6,8 pt/m²)

Method

- NDVI computation → Vegetation mask
- Point cloud classification

Output

- Vegetation in 3 categories
 - Grass
 - Shrub
 - Trees
- Canopy index = 20%

STEP 2 - Current heat stress

Input

- Current vegetation
- 3D buildings
- Landcover & Land use
- Summer hot day conditions
 - Temperature
 - Sun orientation > Shadows
 - Main winds > Wind-protected areas

Method

UNESCO model simulation with Tygron

Output

Heat stress map

Heat stress mapping to guide urban greening solutions

STEP 3 – Potential planting locations

Input

- Vegetation
- Heat stress map
- Landcover, Land use, ...

Method

- 1. Finding candidates
- Ready-to-plan sites
- Sites with sufficient space
- Treeless streets
- 2. Quantifying interest
- Benefit-cost index

Output

Potential sites ranked by interest

Heat stress mapping to guide urban greening solutions

STEP 4 – Strategy & Action plan

Tree plantations

Grass tiles

Vegetalization

Change of surfacing

Heat stress mapping to guide urban greening solutions

Baseline situation

Surface temperature simulation

Heat stress mapping to guide urban greening solutions

Partial vegetalization

Surface temperature simulation

Heat stress mapping to guide urban greening solutions

Partial vegetalization & grass tiles

Surface temperature simulation

Heat stress mapping to guide urban greening solutions

Tree plantations

Surface temperature simulation

Simulation validation with satellite imagery

Landsat 8 - TIRS data

Simulated Physiologically Equivalent Temperature (GSD 1m)

Satellite Land Surface Temperature (GSD 30m)

Concretization of intentions

Comprehensive public space redevelopment project

Trees but not only...

Greening of the base of facades

Conversion of mineral surfaces into grassy or shrubby areas

Data limitations & whish list

With those projects

RGB images / Orthophoto

- Acquisition rate (1x /year)
 - Projects linked to vegetation/crops/... → 1x per season
- NIR band
 - Necessary for most projects
- Pixel size
 - Object detection → The smaller the better

Thermal satellite imagery

- Pixel size
 - Good to validate/calibrate simulations
 - Usually too big for local analysis

LiDAR point cloud (6,8 pt/m²)

Winter & Summer acquisition

Time for questions

Thank you!

www.interregeurope.eu/SATSDIFACTION