

Ints Mednieks mednieks@edi.lv

No. of Labs:

6

Signal Processing Lab.
Space Technology Lab.
Robotics and Machine perception Lab.
Cyber-Physical systems Lab.
Integrated circuit and systems Lab.
Energy research center (Lab.)

Equipment:

Multi-million state of the art equipment

Facts and numbers about EDI

Founded .

1960

Location:

Riga, Latvia

Personnel

130+

Building area:

16 000 m²

International evaluation:

Highest rated institute in Latvia in the field of engineering and technologies

Collaboration:

500+ scientific and industrial partners worldwide

SATSDIFACTION 9.9.2025

EDI expertise

Custom HW

Drone technologies

Radar technologies

Wearable devices

Intelligent Transport systems

Space technologies

Remote sensing

SATSDIFACTION

9.9.2025

13 partners 8 countries 5.5M€ budget

26 partners 12 countries 11M€ budget

65 partners 12 countries 73M€ budget

50 partners 14 countries 38M€ budget

46 partners 11 countries 30M€ budget

33 partners 11 countries 24M€ budget

53 partners 11 countries 70M€ budget

44 partners 16 countries 38M€ budget

11 partners 9 countries 1,44 M€ budget

30 partners 10 country 30M€ budget

48 partners 10 countries 40M€ budget

47 partners 9 countries 36M€ budget

41 partners 12 countries 34M€ budget

49 partners 15 countries 16M€ budget

Remote sensing group of EDI

Development and software implementation of custom methods for image processing

- Finished projects
 - Identification of tree species by processing multispectral and LiDAR data (2009-2011) Contracts with industry
 - O Dviete Discrimination between meadow habitats (finding diversity of plants) (2011-2012) EU LIFE+ project
 - InBiT Biomedical image processing (2013- 2015)
 - GudPils remote sensing image processing for smart cities (2014-2017)
 - DynLand Dynamic land use monitoring by fusion of satellite data (2016-2019)
 European Space Agency (ESA) project
 - WoodStock Satellite remote sensing- based forest stock estimation technology (2019-2022) ERDF
 - Dynland-2 Object based context aware self-learning network for land cover classification (2021-2022) ESA project
 - MireClass Automated identification of mires and peatlands using multi-temporal satellite data (2019-2021)
 ESA project
 - ForestRisk Remote sensing based system for forest risk factor monitoring (2022-2023) ERDF
 - SentiMap Sentinel for confidence in outdated maps (2022-2023) ESA project
 - EO BALP EO Baltic Platform For Governmental Services (2023-2025) ESA project
- Ongoing projects
 - Waterfront Monitoring urban waterfront and recreation territories (2024-2025) ESA project
 - HYLIFORES Comprehensive analysis of hemiboreal forest structure, species composition and ecosystem services using VHR hyperspectral and LiDAR data (2025-2027) grant from Latvian Council of Science

Dynland - Dynamic land use monitoring by fusion of satellite data (2016-2019)

European Space Agency

Dynland classification

Step 1

Non-parametric iterative clustering of multidimensional data

Step 2

Automatic assignment of classes to clusters based on reference data or rules

Detailed classification of coniferous forest

Publication: R.Dinuls, I.Mednieks "Nonparametric Classification of Satellite Images." Proceedings of the 2018 International Conference on Mathematics and Statistics. ACM, New York, NY, USA, 2018, pp. 64-68. DOI:10.1145/3274250.3274260.

WoodStock -

Satellite remote sensing- based forest stock estimation technology (2019-2022)

The project is focused on the development of the prototype technology for estimation of forest stock volume from high-resolution satellite data, including methods for:

- identification of tree species
- automated delineation of microstands
- estimating stock volume

WoodStock

Tree species classification from Sentinel-2 data using deficient (sparse, outdated) inventory data

WoodStock

Automated delineation of microstands in hemiboreal mixed forests using GeoEye-1 data and a JSEG-based workflow

Manual delineation by an expert using orthophoto

Automatic delineation in 2 stages (CHM, MS data)

Automated identification of mires and peatlands using multitemporal satellite data (MireClass) 2019-2022

Goal: To develop MireGIS system for classification of mires and peatlands

Prime contractor: Institute of Electronics and Computer Science

Subcontractor: SIA «SWH SETS» (SETS)

Results based on Sentinel-2 imagery from 3 different seasons + CHM + TreeCover

MireGIS - Web application for land cover classification

Object based context aware self-learning network for land cover classification (Dynland-2) 2021-2022

ForestRisk –

Remote sensing based system for forest risk factor monitoring (2022-2023)

Objective: to develop software tools for assessment, monitoring and alerting of forest risk factors using satellite and unmanned aerial vehicle (UAV) based remote sensing

Main directions:

- 1. Monitoring of forests from satellites
- 2. Detection of risk areas from **VHR** remote sensing data (NIR-RGB, LiDAR, Hyperspectral)

Sentinel for confidence in outdated maps (SentiMap) 2022-2023

Objective: to build a technology prototype for detection of outdated areas in aerial images and land cover maps using satellite and VHR imagery

Directions:

- Identifying outdated areas in VHR aerial imagery
- 2. To detect change probability

SentiMap tool for change detection as anomaly

- Use unsupervised anomaly detector to create outdated information layer
- Calculate probability that the area mapping is outdated & apply threshold

Sentinel-2 image (outdated) - Sentinel-2 image (up-to-date) sample

(c) Outdated information layer

SentiMap tool for change detection by using image-based DSMs height differencing

European Space Agency

The tool applies a morphological filter for height differencing between any (LiDAR, image-based) digital surface models with the goal of change detection mask creation for urban and rural areas for topographic map updating.

19

EO BALP - EO Baltic Platform For Governmental Services (11.2023-05.2025)

European Space Agency

Goal: to develop EO Baltic Platform For Governmental Services and provide six main platform components

EDI task: develop Natural Resource Extraction Monitoring service

Main contractor: Baltic Satellite Service (Latvia)

Subcontractors: DATEL (Estonia)

Klaipeda University (Lithuania)

Institute of Electronics and Computer Science (Latvia)

Rural Support Service (Latvia)

Natural
Resource
Extraction
Monitoring
in
Baltic
states

Waterfront - Monitoring urban waterfront and recreation territories (10.2024 – 12.2025)

European Space Agency

Goal: To provide tools for more frequent and more precise monitoring of urban waterfront territories compared to Copernicus services

Objectives:

- To develop and evaluate deep learning-based land cover class fraction estimation from Sentinel-2 data
- To develop a tool for reed and algae detection in water basins

Prime contractor: Institute of Electronics and Computer Science

Subcontractor: SIA Rīgas meži

Custom CNN for Tree Cover Density fraction estimation

Water/Non-water classifier

Chlorophil *a* content estimator

HYLIFORES - Comprehensive analysis of hemiboreal forest structure, species composition and ecosystem services using VHR hyperspectral and LiDAR data (2025-2027)

Main contractor: LSFRI Silava

Hyperspectral snaphot camera Cubert Ultris X20 Plus

Our competence

- 1. Object detection and classification in images
- 2. Processing data from various sensors including fusion (RGB, multspectral, hyperspectral, LIDAR)
- Custom solutions based on dedicated remote sensing data processing methods and software

Contacts: Ints Mednieks

E-mail: mednieks@edi.lv

